$$ R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R+\Lambda g_{\mu\nu}=\kappa T_{\mu\nu} $$
$$ -\frac{\hbar^{2}}{2m}\Delta \psi (\vec{r},t)+V(\vec{r})\psi (\vec{r},t)=i \hbar \frac{\partial \psi (\vec{r},t)}{\partial t} $$
$$ det(A):=\sum_{\sigma\in S_{n}}\varepsilon(\sigma)\prod_{i=1}^{n}a_{i,\sigma(i)} $$
$$ n!\underset{n\rightarrow+\infty}{\sim}\sqrt{2\pi n}\left(\frac{n}{\mathrm{e}}\right)^{n} $$
$$ \varphi : n\in\mathbb{N}^{*}\mapsto \mathrm{Card}\left ( \left \{ m\in \mathbb{N}^{*}|m\leq n,m\wedge n = 1\right \} \right )\in\mathbb{N}^{*} $$
$$ \left(\int\left|\,f+g\,\right|^{\,p}\mathrm{d}\mu\right)^{\frac{1}{p}}\leq\left(\int\left|\,f\,\right|^{\,p}\mathrm{d}\mu\right)^{\frac{1}{p}}+\left(\int\left|\,g\,\right|^{\,p}\mathrm{d}\mu\right)^{\frac{1}{p}} $$
$$ \int_{-\infty}^{+\infty}\mathrm{e}^{-\alpha x^{2}}\mathrm{d}x=\sqrt{\frac{\pi}{\alpha}} $$
$$ \mathrm{exp}(tJ_{\lambda }) = \mathrm{exp}(t\lambda ) \begin{pmatrix} 1 & t & \frac{t^{2}}{2} & \cdots & \frac{t^{p-1}}{(p-1)!} \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & t & \frac{t^{2}}{2} \\ \vdots & 0 & \ddots & \ddots & t \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix} $$
$$ \int_{C} P\mathrm{d}x+Q\mathrm{d}y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\mathrm{d}x\mathrm{d}y $$
$$ \mathscr{F}(f):\xi\mapsto\hat{f}(\xi)=\int_{-\infty}^{+\infty}f(x)e^{-i\xi x}\mathrm{d}x $$
$$ S=\sum_{n\geq 1}\frac{1}{n^{\alpha}} $$
$$ (a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^{k} $$
$$ V=\begin{pmatrix} 1 & \alpha_{1} & (\alpha_{1})^{2} & \cdots & (\alpha_{1})^{n-1}\\ 1 & \alpha_{2} & (\alpha_{2})^{2} & \cdots & (\alpha_{2})^{n-1}\\ 1 & \alpha_{3} & (\alpha_{3})^{2} & \cdots & (\alpha_{3})^{n-1}\\ \vdots & \vdots & \vdots & & \vdots\\ 1 & \alpha_{m} & (\alpha_{m})^{2} & \cdots & (\alpha_{m})^{n-1} \end{pmatrix} $$
$$ k=A\mathrm{e}^{-\frac{E_{a}}{RT}} $$
$$ \left ( \ddot{S}\right )=\left\{\begin{matrix} \vec{\nabla}\cdot \vec{E} = \frac{\rho}{\varepsilon_{0}}\\ \vec{\nabla}\cdot \vec{B} = 0\\ \vec{\nabla}\times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\\ \vec{\nabla}\times \vec{B} = \mu_{0}\left ( \vec{j} + \varepsilon_{0}\frac{\partial \vec{E}}{\partial t}\right ) \end{matrix}\right. $$
$$ \Delta_{r}H_{(T)}^{0}=\sum_{i}\nu_{i}\Delta H_{f,i(T)}^{0} $$
$$ \overrightarrow{\mathrm{d}F}=\overrightarrow{I\mathrm{d}l}\wedge\overrightarrow{B_{ext}} $$
$$ \vec{F}=q\left(\vec{E}+\vec{v}\wedge\vec{B}\right) $$
$$ \mathbb{P}(A_{j}|B)=\frac{\mathbb{P}(A_{j})\times \mathbb{P}(B|A_{j})}{\sum_{k=1}^{n}(A_{k})\times \mathbb{P}(B|A_{k})} $$
$$ S=k_{B}\mathrm{ln}(\Omega) $$
$$ \sigma_{x}\sigma_{v}\geq\frac{\hbar}{2m} $$
$$ f(x)=\sum_{k=0}^{n}\frac{(x-x_{0})^{k}}{k!}f^{(k)}(x_{0})+\int_{x_{0}}^{x}\frac{(x-t)^{n}}{n!}f^{(n+1)}(t)\mathrm{d}t $$
$$ \mathbb{P}\left(\begin{Bmatrix} Z\geqslant a \end{Bmatrix}\right) \leqslant \frac{\mathbb{E}[Z]}{a} $$
$$ \overrightarrow{\Pi}(\vec{r},t)=\frac{\overrightarrow{E}(\vec{r},t)\wedge\overrightarrow{B}(\vec{r},t)}{\mu_{0}} $$
$$ \overrightarrow{F_{q_{1}\rightarrow q_{2}}}=\frac{q_{1}q_{2}}{4\pi\varepsilon_{0}}\cdot \frac{\overrightarrow{M_{1}M_{2}}}{\left \| \overrightarrow{M_{1}M_{2}} \right \|^{3}} $$
$$ \frac{1}{\overline{OA'}}-\frac{1}{\overline{OA}}=\frac{1}{f'} $$
$$ \sum_{n=0}^{+\infty}w_{n}=\left(\sum_{p=0}^{+\infty}u_{p}\right)\left(\sum_{q=0}^{+\infty}v_{q}\right) $$
$$ f_{a,b}(x)=\sum_{n=0}^{\infty}a^{n}\mathrm{cos}(b^{n}\pi x) $$
$$ W_{n}=\int_{0}^{\frac{\pi}{2}}\mathrm{sin}^{n}(x)\mathrm{d}x $$
$$ J_{f}(a)=\begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(a) & \frac{\partial f_{1}}{\partial x_{2}}(a) & \cdots & \frac{\partial f_{1}}{\partial x_{p}}(a)\\ \frac{\partial f_{2}}{\partial x_{1}}(a) & \frac{\partial f_{2}}{\partial x_{2}}(a) & \cdots & \frac{\partial f_{2}}{\partial x_{p}}(a)\\ \vdots & \vdots & \ddots & \vdots\\ \frac{\partial f_{n}}{\partial x_{1}}(a) & \frac{\partial f_{n}}{\partial x_{2}}(a) & \cdots & \frac{\partial f_{n}}{\partial x_{p}}(a) \end{pmatrix} $$
$$ e_{\mathrm{ind}}=-\frac{\mathrm{d}\Phi}{\mathrm{d}t} $$
$$ E=E^{\circ}+\frac{RT}{nF}\mathrm{ln}\left(\frac{a_{\mathrm{Ox}}\cdot a_{\mathrm{H^{+}}}^{x}}{a_{\mathrm{Red}}\cdot a_{\mathrm{H_{2}O}}^{y}}\right) $$
$$ [I(S,P)]=[I(S,G_{S})]+[I(S,PG_{S})] $$
$$ \left.\begin{matrix}\frac{\mathrm{d}\vec{U}}{\mathrm{d}t}\end{matrix}\right|_{R}=\left.\begin{matrix}\frac{\mathrm{d}\vec{U}}{\mathrm{d}t}\end{matrix}\right|_{R'}+\vec{\Omega}(R'/R)\wedge \vec{U} $$
$$ \left\|\sum_{i=0}^{p}x_{i}\right\|^{2}=\sum_{i=0}^{p}\left\| x_{i}\right\|^{2} $$
$$ \underline{V}_{A}=\frac{\sum_{k}\underline{Y}_{k}\underline{V}_{k}}{\sum_{k}\underline{Y}_{k}} $$
$$ \vec{P}_{A}=-M_{f}\vec{g} $$
$$ P(X)=\sum_{i=1}^{n}\left[\prod_{\begin{matrix} 1\leq j\leq n\\ j\neq i \end{matrix}}\frac{X-x_{j}}{x_{i-x_{j}}}\right] $$
$$ U=R\cdot I $$
$$ \frac{\mathrm{d}\mathrm{ln}(K^{0})}{\mathrm{d}T}=\frac{\Delta_{r}H^{0}(T)}{RT^{2}} $$
$$ C_{p}-C_{v}=T\left(\frac{\partial p}{\partial T}\right)_{V,N}\left(\frac{\partial V}{\partial T}\right)_{p,N} $$
$$ i\hbar\frac{\partial \psi }{\partial t}(x,t)=\left(mc^{2}a_{0}-i\hbar c\sum_{j=1}^{3}a_{j}\frac{\partial}{\partial x_{j}}\right)\psi (x,t) $$
$$ \left[{\partial_{\mu}}{\partial ^{\mu}}+\left(\frac{mc}{\hbar}\right)^{2}\right]B^{\nu}=0 $$
$$ G(x_{1},...,x_{n})=\begin{vmatrix} (x_{1}|x_{1}) & (x_{1}|x_{2}) & \cdots & (x_{1}|x_{n})\\ (x_{2}|x_{1}) & (x_{2}|x_{2}) & \cdots & (x_{2}|x_{n})\\ \vdots & \vdots & \ddots & \vdots\\ (x_{n}|x_{1}) & (x_{n}|x_{2}) & \cdots & (x_{n}|x_{n}) \end{vmatrix} $$
$$ T_{n}(\mathrm{cos}\,\theta)=\mathrm{cos}(n\theta) $$
$$ \frac{t\mathrm{e}^{xt}}{\mathrm{e}^{t}-1}=\sum_{n=0}^{\infty}B_{n}(x)\frac{t^{n}}{n!} $$
$$ \sum_{k=1}^{n}\left|\,x_{k}y_{k}\,\right|\leq\left(\sum_{k=1}^{n}\left|\,x_{k}\,\right|^{\,p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{n}\left|\,y_{k}\,\right|^{\,q}\right)^{\frac{1}{q}} $$
$$ \sum_{1\leq k\leq n}k^{p}=\frac{1}{p+1}\sum_{j=0}^{p}\binom{p+1}{j}B_{j}n^{\,p+1-j} $$
$$ \mathrm{dim}(F)+\mathrm{dim}(G)=\mathrm{dim}(F+G)+\mathrm{dim}(F\cap G) $$
$$ \varphi\left(\int_{0}^{1}g(x)\mathrm{d}x\right)\leq\int_{0}^{1}\varphi(g(x))\mathrm{d}x $$
Henshin Scene of
transformation
Opening of
the show

It has been 10 years since Pandora Box was discovered on Mars...

...and caused the Skywall tragedy.

Our country was divided into, Touto, Seito, and Hokuto...

...resulting in untold chaos.

Warning ! Music will be played once you click on 'HENSHIN' button !